## Inhibition in synthesis of \beta-alanine by D-serine

D-Serine inhibits growth and cell division in a species of Erwinia in a defined medium resulting in formation of filaments 100  $\mu$  or more in length<sup>1</sup>. Previously, it was shown that D-serine strongly inhibits pantothenate and coenzyme A synthesis through inhibition in synthesis of pantoic acid; this block is related to cell-division inhibition<sup>2</sup>. Two other amino acids which inhibit cell division (D-phenylalanine or D-histidine) also block pantothenate synthesis, but to a lesser extent than D-serine. D-Serine differs from the other two amino acids in that added pantoyllactone results in a limited (approx. 25%) restoration of pantothenate synthesis, whereas with D-phenylalanine or D-histidine, restoration is over 100%<sup>2</sup>.

Addition of  $\beta$ -alanine to D-serine-containing media results in a several-fold increase in pantothenate synthesis<sup>2</sup>. These data suggested that D-serine blocks  $\beta$ -alanine, as well as pantoic acid, synthesis. Durham and Milligan<sup>3</sup> reported that  $\beta$ -alanine or pantothenic acid overcomes growth inhibition in a Flavobacterium sp. by D-serine and inferred that D-serine blocked  $\beta$ -alanine synthesis. Maas and Davis<sup>4</sup> reported that D-serine inhibited the condensation of  $\beta$ -alanine and pantoic acid in Escherichia coli. Studies providing direct evidence for inhibition of  $\beta$ -alanine synthesis (via  $\alpha$ -decarboxylation of aspartic acid) by D-serine are reported in this paper. Synthesis of  $\beta$ -alanine through  $\alpha$ -decarboxylation of aspartic acid is well documented<sup>5-7</sup>.

Initially, tests were done on the effects of the three D-amino acids upon utilization of aspartic acid during growth. Without glucose in the defined medium, aspartic acid is completely utilized in 16 h in the absence of D-amino acids. On a molar basis D-serine inhibits utilization much more effectively than D-phenylalanine or D-histidine (Table I).

Since inhibition of utilization of aspartic acid (in this case, the sole source of carbon, energy, and nitrogen) did not necessarily mean that  $\alpha$ -decarboxylation was blocked, the effect of D-serine on  $CO_2$  evolution from aspartic acid by washed cells was tested manometrically. Erwinia cells grown on nutrient agar at 28° for 16–17 h evolve an excess of  $CO_2$  over  $O_2$  from aspartic acid. After 21 h growth, although active in  $O_2$  uptake, cells showed no net  $CO_2$  evolution. Apparently, older cells lose  $\alpha$ -decarboxylation activity. This is in accord with the observation of BILLEN AND

TABLE I

EFFECT OF D-SERINE, D-HISTIDINE, AND D-PHENYLALANINE ON UTILIZATION OF ASPARTIC ACID Initial aspartic acid concentration was 2.8 mg/ml of medium. Supernatants were directly chromatographed in the two-dimensional system of Redfields; amino acids were eluted and the amount present determined according to the technique of Saltons.

| р-Amino acid                     | Residual aspartic acta<br>mg/mg dry wt. cells |
|----------------------------------|-----------------------------------------------|
| None                             | o                                             |
| D-Serine (0.002 M)               | o                                             |
| D-Serine (0.004 M)               | 0.18                                          |
| p-Serine (0.008 M)               | 1.17                                          |
| D-Serine (0.004 M)               |                                               |
| plus $\beta$ -alanine (0.0033 M) | O                                             |
| D-Histidine (0.012 M)            | O                                             |
| D-Phenylalanine (0.008 M)        | 0.115                                         |

LICHSTEIN<sup>7</sup>, who found that *Rhizobium trifolii* cells showed a marked decrease in ability to synthesize  $\beta$ -alanine from aspartic acid after a culture age of 15 h.

D-Serine did not inhibit O<sub>2</sub> uptake with L-aspartic acid by older cells (over 20 h), but with 16-h cells approx. a 20% inhibition was observed. Net CO<sub>2</sub> evolution was stopped by 0.057 M D-serine (Fig. 1). Since the increase in pH, resulting from metabolism of aspartic acid, was slightly greater in the absence of D-serine, cessation of

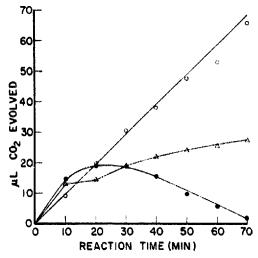



Fig. 1. Inhibition of net CO<sub>2</sub> evolution from L-aspartic acid by D-serine. D-Serine added at 10 min. Initial pH 6.2; final pH 7.0-7.2. Reactions were carried out at 30° with air as the gas phase using the direct method of Warburg<sup>10</sup>. 0.14 M phosphate buffer (pH 6.2) and 0.05 mM of L-aspartic acid were used. O—O, Control; Δ—A, D-serine 0.028 M; • D-serine 0.057 M.

 $CO_2$  evolution cannot be attributed to a rise in pH. With D-scrine alone (no aspartic acid), cells took up  $O_2$  at a rate about one-fourth that with aspartic acid. No net  $CO_2$  evolution occurred.

To confirm that inhibition of  $\alpha$ -decarboxylation occurred, samples of flask contents were assayed microbiologically for  $\beta$ -alanine. Basal medium of King and Cheldelin<sup>11</sup> and Saccharomyces cerevisiae ATCC 9371 were used. Under conditions of our testing, it was determined that neither pantothenate nor D-serine interfered with results of the assay. Without D-serine in the reaction mixture, 10  $\mu$ g/ml  $\beta$ -alanine was present. With 0.057 M D-serine, the concentration of  $\beta$ -alanine was 4.5  $\mu$ g/ml.

TABLE II

INHIBITION BY D-SERINE OF SYNTHESIS OF EXTRACTABLE INTRACELLULAR  $\beta$ -ALANINE

Reaction run for 90 min at 30°. Concentrations: 0.014 M L-aspartic acid, 0.03 M phosphate buffer (pH 7.0), 20 mg dry wt. cells per flask.

| p-Serine<br>(M) | μg β-alanine<br>per mg cells |
|-----------------|------------------------------|
| o               | 1.06                         |
| 0.0013          | 0.92                         |
| 0.003           | 0.64                         |
| 0.006           | 0.37                         |
| 110.0           | 0.17                         |
| 0.017           | 0.14                         |
| 0.028           | 0.11                         |

Further tests of inhibition of  $\beta$ -alanine synthesis by D-serine were done by incubation of washed 16-h cells in a Dubnoff shaker at 30°. Analysis for  $\beta$ -alanine was accomplished using cell supernatants and a boiled extract of cells (10 min using 3 ml water per 20 mg cells). Under these conditions, D-serine strongly decreases the level of intracellular  $\beta$ -alanine (Table II).

Although most  $\beta$ -alanine was found to be intracellular, the same pattern of inhibition by D-serine was observed when testing for extracellular  $\beta$ -alanine. Surprisingly, when the pH of the incubation medium was varied, 100 % more  $\beta$ -alanine was excreted at pH 6.0 as compared to pH 7.0 (0.26 vs. 0.13  $\mu$ g  $\beta$ -alanine per ml supernatant per mg cells) in control flasks (no D-amino acid present). Thus it could be postulated that cellular retention of  $\beta$ -alanine and subsequent synthesis of pantothenic acid is, in part, pH dependent. This has been confirmed using 16-h growing cultures of Erwinia sp. Cells from a medium wherein pH at harvest time was 5.6 contained 0.66  $\mu$ g pantothenic acid per unit cell mass whereas cells from a medium wherein pH at harvest was 6.9 contained 1.4  $\mu$ g pantothenic acid per unit cell mass.

In conclusion, our data provide direct evidence for inhibition of synthesis of  $\beta$ -alanine from aspartic acid by p-serine in this species of Erwinia. Further, we have demonstrated that excretion of  $\beta$ -alanine and subsequent synthesis of pantothenic acid is, in part, pH dependent.

This investigation was supported in part by research Grants No. G-9848 and GB-259 from the National Science Foundation and a Public Health Service research career program award GM-K3-13,968 from the Division of General Medical Sciences.

```
Department of Microbiology, Oklahoma State University,
Stillwater, Okla. (U.S.A.)
```

E. A. GRULA MARY M. GRULA

```
<sup>1</sup> E. A. GRULA, J. Bacteriol., 80 (1960) 375.
```

Received February 11th, 1963

Biochim. Biophys. Acta, 74 (1963) 776-778

SC 2254

## Alterations of rat-tissue cytochrome c levels by a chronic cold exposure

Recent studies have indicated that one of the factors responsible for the improved thermogenic capacity of the cold-acclimatized animals is an alteration in the pattern and magnitude of electron transport. Thus, within the electron-transport system an increased activity or concentration of succinate dehydrogenase (EC 1.3.99.1) and

<sup>&</sup>lt;sup>2</sup> M. M. GRULA AND E. A. GRULA, J. Bacleriol., 83 (1962) 989.

<sup>3</sup> N. N. DURHAM AND R. MILLIGAN, Biochem. Biophys. Res. Commun., 7 (1962) 342.

<sup>4</sup> W. K. MAAS AND B. D. DAVIS, J. Bacteriol., 60 (1950) 733.

<sup>&</sup>lt;sup>5</sup> J. M. RAVEL AND W. SHIVE, J. Biol. Chem., 166 (1946) 407.

<sup>6</sup> W. SHIVE AND J. MACOW, J. Biol. Chem., 162 (1946) 451.

<sup>7</sup> D. H. BILLEN AND H. E. LICHSTEIN, J. Bacteriol., 58 (1949) 215.

<sup>8</sup> R. R. REDFIELD, Biochim. Biophys. Acta, 10 (1953) 344.

<sup>9</sup> M. R. J. SALTON, Biochim. Biophys. Acta, 39 (1960) 398.

<sup>10</sup> W. W. UMBREIT, R. H. BURRIS AND J. F. STAUFFER, Manometric Techniques and Tissue Metabolism, Burgess Pub. Co., Minneapolis, Minn., 1949, p. 17.

<sup>11</sup> T. E. KING AND V. H. CHELDELIN, J. Biol. Chem., 174 (1948) 273.